The sine rule and its proof

In any
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ or $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Proof:

Acute-angled triangle

Let
$$AD = h$$

= height of
$$\triangle$$
ABC with base BC

$$\sin B = \frac{h}{c}$$
 and $\sin C = \frac{h}{b}$

$$\therefore h = c \sin B$$
 and $h = b \sin C$

Equate h on both sides:

$$\therefore c\sin B = b\sin C$$

Divide both sides by bc

$$\frac{c \sin B}{bc} = \frac{b \sin C}{bc}$$

$$\therefore \frac{\sin B}{b} = \frac{\sin C}{c}$$

Let
$$CE = h$$

= height of \triangle ABC with base AB

Repeat the steps above to get:

$$\frac{\sin B}{b} = \frac{\sin A}{a}$$

$$\therefore \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Obtuse-angled triangle

Let
$$AD = h$$

= height of \triangle ABC with base BC

$$\sin B = \frac{h}{c}$$
 and $\sin (180^{\circ} - C) = \frac{h}{b}$

but
$$\sin C = \sin (180^{\circ} - C)$$

$$\therefore h = c \sin B$$
 and $h = b \sin C$

Equate *h* on both sides:

$$\therefore c\sin B = b\sin C$$

Divide both sides by bc

$$\frac{c \sin B}{bc} = \frac{b \sin C}{bc}$$

$$\therefore \frac{\sin B}{b} = \frac{\sin C}{c}$$

Let
$$AD = h$$

= height of \triangle ABC with base AB

Repeat the steps above to get:

$$\frac{\sin B}{h} = \frac{\sin A}{a}$$

$$\therefore \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
 which is the same as

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$